
Theor Chem Acc (2006) 115: 266–273
DOI 10.1007/s00214-005-0020-1

REGULAR ARTI CLE

William Eek · Sture Nordholm

Simple analysis of atomic reactivity: Thomas–Fermi theory
with nonergodicity and gradient correction

Received: 8 September 2004 / Accepted: 28 July 2005 / Published online: 15 October 2005
© Springer-Verlag 2005

Abstract Covalent bonding has been found to be related to
the relaxation of dynamical constraints on electronic motion
in atoms and molecules. The corresponding strain energy in
an atom is therefore a measure of its inherent reactivity. Here,
such reactivities of the atoms H through Ne are estimated
by the use of the Thomas–Fermi density functional theory
which can be simply implemented using parametrized expo-
nential electron densities in two different forms—the tradi-
tional form assuming complete ergodicity and a modified
form which accounts for nonergodicity and therefore strain.
The Thomas–Fermi functional is amended by the incorpo-
ration of gradient correction of the kinetic energy according
to the von Weizsäcker prescription. This correction, imple-
mented within the nonergodic form of the Thomas–Fermi
theory, is scaled to yield total atomic energies in agreement
with the Hartree–Fock results. The scaling factor shows a var-
iation from around 0.07 for Be to 0.1 for Ne. The reactivity,
measured by the stabilization brought by going to the ergo-
dic form of quantization within the Thomas–Fermi theory, is
zero for He and Ne and shows a broad peak around oxygen
in apparent agreement with chemical intuition. Molecular
bonding efficiencies are studied for some small molecules
and are found to be relatively large for hydrides and smaller
for diatomic molecules such as Be2 and F2.

Keywords Covalent bonding · Atomic reactivity ·
Ergodicity · Thomas–Fermi theory · Gradient correction

1 Introduction

Atomic reactivity and its expression in the form of mole-
cule formation through chemical bonding is arguably the
very heart of chemistry. While ionic bonding is relatively
straightforward to explain the more important covalent bond-
ing mechanism is far more subtle. The best simple picture of
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covalent bonding is still a matter of debate. Despite the great
advances in the computational power of quantum chemistry,
it has still not been possible to settle the argument between
those favoring kinetic or electrostatic mechanisms as the fun-
damental causes of covalent bonding. A recent review of the
issue and an interesting compromise can be found in the work
of Esterhuysen and Frenking [1]. Here, we follow-up an ear-
lier proposal [2,3] that covalent bonding is best understood
as due to a relaxation of dynamical constraints or nonergod-
icity of the electronic motion by reanalyzing the concept of
atomic reactivity. In essence we shall follow the still widely
used notion of Lewis [4,5] that atoms react in order to ap-
proach particularly stable inert gas electronic structures more
closely. We have found a simple yet plausible way of obtain-
ing atomic energies with or without dynamical constraints,
i.e., a way to calculate this Lewis stabilization energy for a
simple atom. We thereby identify an inherent reactivity of an
atom which, due to the presence of antibonding mechanisms
of varying strength, will be partially expressed in a given
molecule containing this atom. In this way we hoped to un-
ravel the basic source of covalent bonding from its complex
and composite expression in molecular stabilities.

It is now well established that the density functional the-
ories [6–9] which follow the Kohn–Sham [10] approach to
the estimation of kinetic energy yield an excellent represen-
tation of covalent bonding in molecules. The original den-
sity functional theory (DFT) of Thomas [11] and Fermi [12],
however, has been shown not to yield any covalent bonding
at all [6,13]. This complete absence of covalent bonding in
the Thomas–Fermi (TF) theory of electronic structure is a
reliable indication that the mechanism of covalent bonding
is contained in the mechanistic complement to the overlap
of the Kohn–Sham implementation of the DFT with the TF
theory. The essential mechanism introduced by Kohn and
Sham in taking over the orbital description of kinetic en-
ergy from the Hartree–Fock theory is one-electron dynam-
ics. This account of dynamics is absent in the TF theory
which replaces it with a statistically uniform sampling of
phase space between bounding energy surfaces determined
by the correspondence principle. In doing so the TF theory
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loses all possibility of representing nonergodicity and hin-
dered internal electron dynamics in atoms and molecules.
Such dynamical constraints are relaxed upon covalent bond
formation by delocalization and facilitation of internal elec-
tron dynamics in molecules. Realization of this dynamical
origin of covalent bonding goes all the way back to Hellman
[14,15] in the 1930’s and Ruedenberg around 1960 [16,17]
who pointed out the fundamental role of valence electron
delocalization over covalently bonded atoms. In more recent
years the remaining confusion about the role of the virial
theorem and the source of the inability of the TF theory to
predict covalent bonding has been resolved [2,3,18].

The possibility of extending the TF theory to include a
quantization based on nonergodic dynamics and a dynami-
cally decomposable phase space has been noted and used to
estimate the inherent reactivity of an atom by calculating the
stabilization energy associated with the removal of nonergod-
ic constraints on the quantization [2]. The original Thomas–
Fermi theory is in this sense unconstrained and ergodic. It
effectively treats each atom as if it was of noble gas char-
acter, i.e., already reactively relaxed. An examination of the
so-defined reactivity of the first ten atoms revealed vanish-
ing reactivity for the inert gas atoms He and Ne, by defini-
tion, and a rising reactivity from Li reaching a maximum of
40.8 eV for O. The present work is an addendum intended
to clarify the previous results and apply the atomic reactiv-
ity analysis to the question of bonding efficiencies in some
small molecules. One problem of the original analysis is that
the Thomas–Fermi theory is quantitatively inaccurate. The
reliability of the reactivities that are obtained may therefore
be questioned on purely numerical grounds. It is well known
that the main flaw of the Thomas–Fermi theory resides in its
kinetic energy estimate which only accounts for the orthog-
onality contribution arising as a consequence of the Pauli
principle. The other major source of the kinetic energy of
quantum systems is the gradient kinetic energy imposed by
boundary conditions on closed systems. The simplest account
of such gradient kinetic energy which is the only type pres-
ent for one-electron ground states is that of von Weizsäcker
[19] who noted that it could be estimated directly in terms of
squared and integrated electron density. We shall add a von
Weizsäcker correction to the functional scaled by a factor λ
which will be optimized in a TF calculation incorporating
nonergodic spin and angular momentum constraints to yield
total atomic energies in agreement with Hartree–Fock cal-
culations. The same functional will then be applied without
nonergodic constraints to yield a stabilization that we iden-
tify with the atomic reactivity �Ereac. In this way we shall
focus on the two types of kinetic energy broadly termed as
orthogonality and gradient kinetic energy which make up the
total kinetic energy [19,20]. The choice of exponential elec-
tron densities for each shell with optimized exponents is also
related to the type of kinetic energy functional used.

It should be clear that what follows is still mainly a qual-
itative analysis, but it has been made more quantitative and
realistic by attention to the gradient related contribution to the
kinetic energy. The concept of atomic reactivity that we use

here is based on the idea that an atom in isolation in its ground
state is in an energetically elevated state due to constraints
imposed by symmetries and lack of coupling which restrict
the electronic motion and thereby cause the Fermi surface,
or the chemical potential, to be nonuniform. By our simple
comparison of Thomas–Fermi ground state energies with or
without such constraints we can estimate the stabilization
associated with the removal of these constraints and thereby
obtain a measure of the inherent reactivity of the atom. Given
such a quantitative measure of atomic reactivity, we then
define a concept of bonding efficiency as the fraction of the to-
tal atomic reactivity realized as binding energy in a molecule.
In an investigation of bonding in small molecules hydrides are
found to yield high bonding efficiency while homogeneous
diatomic molecules generally yield much lower efficiency.

2 Basic theory

The traditional Thomas–Fermi theory of electronic structure
is based on the expression of the energy E as a functional of
the electron density ρ -

E(ρ) = C

∫
dr(ρ(r))5/3

+1

2

∫
drρ(r)

∫
dr′ρ(r′)

∣∣r − r′∣∣−1

+
∫

drρ(r)Vext(r), (1)

where the three terms correspond to, in order, kinetic energy,
electron–electron repulsion and electron–external potential
energy. In this case the external potential is the Coulomb
attraction between the electrons and the nucleus. The con-
stant C is given by -

C =
(

3h2

40m

)
×

(
3

π

)2/3

. (2)

If the electron density ρ(r) is optimized fully, the atomic
energies will be greatly overestimated due to the lack of
gradient correction to the kinetic energy. The kinetic energy
represented in the functional above is purely of an orthogo-
nality type, i.e., an estimate in the classical limit of the addi-
tional energy required to assign electrons to independent and
orthogonal one-electron states. In quantum mechanics an-
other type of kinetic energy is associated with the gradient
of the wavefunction as it approaches preset boundary condi-
tions for r → 0 and r → ∞. A way to understand this was
offered by von Weizsäcker [19] who noted that for a ground
state one-electron wavefunction ψ the relation -

ψ(r) = (ρ(r))1/2 (3)

can be taken to hold and then the normal quantum mechan-
ical kinetic energy can be rephrased in terms of the electron
density as -
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EK = − h̄2

2m

∫
drψ∗(r)∇2ψ(r)

= h̄2

8m

∫
dr

[∇ρ(r) · ∇ρ(r)]
ρ(r)

. (4)

If we replace the TF orthogonality kinetic energy functional
in Eq. 1 above by this gradient kinetic energy functional,
we will get the correct kinetic energy for the hydrogen atom
and—apart from the kinetic energy associated with the
Coulombic correlation—also the correct kinetic energy for
helium. As we go to larger atoms the orthogonality kinetic
energy enters and is misrepresented by the gradient func-
tional. Despite its obvious flaws the orthogonality functional
is generally used but sometimes with a correction for gradi-
ent kinetic energy. It is not a good idea just to add the two
functionals, because they substantially overlap and would in
a direct sum double count a large part of the kinetic energy.
Often the traditional TF functional is corrected for gradi-
ent kinetic energy by adding the von Weizsäcker functional
scaled down by a factor of 1/9 [6,21].

Our purpose here is to refine our simple earlier estimate
of atomic reactivity by exploiting the simplicity of the von
Weizsäcker gradient correction to the kinetic energy. We will
add the von Weizsäcker functional multiplied by λ to the
traditional TF functional to obtain the new functional -

E(ρ; λ) = C

∫
dr(ρ(r))5/3 + λ

h̄2

8m

∫
dr [�ρ(r) ·�ρ(r)]

ρ(r)

+1

2

∫
drρ(r)

∫
dr′ρ(r′)|r − r′|−1

+
∫

drρ(r)Vext(r), (5)

which will then be optimized with respect to both ρ and λ,
subject to constraints. This simple gradient correction does
not account for the kinetic energy accurately in detail, but it
provides a major shift to quantitatively reasonable energies
sufficient for our present purpose. A similar correction of the
Thomas–Fermi kinetic energy was recently used by Parr et al.
[21] with good results for inert gas atoms. We shall still take
the electron density to be of simple exponential form for each
shell [2], i.e.,

ρ(r) = ρK(r) = Z
α3

8π
exp(−αr) for H and He, (6)

ρ(r) = ρK(r)+ ρL(r) = α3
1

8π
exp(−α1r)

+(Z − 2)
α3

2

8π
exp(−α2r) for Li to Ne.

Here Z is the atomic number. We should note here that the
exponential form of electron density would have been ex-
act for hydrogen, if we used the then correct von Weizsäcker
kinetic energy as above without any orthogonality kinetic en-
ergy. In the presence of such orthogonality kinetic energy and
correspondingly reduced gradient kinetic energy obtained by
our semiempirical scaling above, the electron density will
contract towards the nucleus and a Yukawa form of electron

density -

ρ(r) = C

r
exp(−αr) (7)

would give a lower energy. We nevertheless stick to the expo-
nential form of electron density specifically to account for the
gradient form of kinetic energy which will apply in full both
at small r and for large r [20].

As noted in our earlier work [2] the linear electron–nucleus
potential energy and the bilinear electron–electron repulsion
energy can both be evaluated analytically for exponential
electron densities such as we are using. We have -

Vne =
∫

drρ(r)Vext(r) = − (N1α1 +N2α2)

2
(8)

and

Vee = 1

2

∫
drρ(r)

∫
dr′ρ(r′)

∣∣r − r′∣∣−1

= (N1 − 1)V̂ee(α1, α1)

+N1N2V̂ee(α1, α2)+
[
N2(N2−1)

2

]
V̂ee(α2, α2), (9)

where N1 and N2 are the numbers of electrons in the K and
L-shells and -

V̂ee(α1, α2) = 1

2

(
α3

1α2 + 3α2
1α

2
2 + α1α

3
2

)
(α1 + α2)

3 . (10)

The kinetic energy terms can likewise be readily calculated
analytically for a single exponential form of electron density
as for H and He but not for multiple exponential densities as
for Li to Ne. Thus, we have employed a simple numerical
integration to evaluate the kinetic energies.

3 Thomas–Fermi theory for nonergodic systems

In the discussion above there is no obvious role for elec-
tron dynamics. We shall now note that this lack of attention
causes a major error that eliminates both atomic reactivity
and covalent bonding. Let us first recall the concept of ergo-
dicity by which the nature of classical dynamics can be most
fundamentally characterized.

Definition 1 A classical system is ergodic at the energy E
if for all trajectories �(t;�0) started on this energy surface
at some initial phase space point �0—except a set of mea-
sure zero—the time average of any physical property A in the
long time limit reproduces the microcanonical phase space
average,

〈A〉xE = lim
t→∞

1

t

∫ t

0
dsA(�(t;�0)). (11)

- This definition implies that ergodic systems show a type of
completely coupled statistical dynamics which microcanon-
ically equilibrates the system as time evolves.
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The Thomas–Fermi theory is based on the Pauli prin-
ciple insisting on the grounds of antisymmetry of the total
wavefunction that each electron occupy its own unique one-
electron state and the correspondence principle stating that a
quantum state of a three-dimensional particle motion occupy
a phase space volume of h3. This correspondence is readily
verified for simple systems such as the particle-in-a-box and
harmonic oscillator. Thomas and Fermi proposed that -

Proposition 2 The energy eigenstates of a three-dimensional
particle motion can be identified with phase space volumesh3

occupying classical phase space fully, uniformly and sequen-
tially in the order of increasing energy and the corresponding
energy eigenvalues can be obtained as uniform phase space
averages of the classical energy in such eigenstate phase
space volumes.

In the normal application of the Thomas–Fermi theory
the system has been defined without any consideration of
whether it is ergodic or not. The eigenstates implied by the
proposition above have therefore been global and delocalized
over the entire available classical phase space irrespective
of whether the actual dynamics would be correspondingly
global and delocalized. There is, however, an inconsistency
in this neglect of dynamics which we can understand by con-
sidering the case of H+

2 at very large bondlengths. If the
protons are so far apart that the two potential wells presented
to the electron are dynamically decoupled, i.e., the electron
in its electronic ground state has to be localized in one or the
other well, then the ground state energy must clearly be that
of a hydrogen atom. Nevertheless, the normal application of
the Thomas–Fermi theory would combine the lowest phase
space volumes (1/2)h3 on each proton into a lowest quantum
state forH+

2 at long bondlengths. This means that the stabil-
ization associated with covalent bond formation is already
fully in place at long distances between the protons and there
is no further stabilization to be gained by bringing the protons
to short bondlength as in the stable molecule we know from
reality. The resolution to this problem lies in the incorpora-
tion of dynamical constraints into the Thomas–Fermi theory.
We propose to do that by the following addendum to the
proposition above.

Proposition 3 Addendum: For nonergodic systems such that
classical phase space is decomposable into dynamically
uncoupled subspaces the quantization should proceed sep-
arately within each subspace.

We see now that the extendedThomas–Fermi theory intro-
duced by the addendum above would offer a better descrip-
tion of the unbonded H+

2 at long bondlengths. There would
then be two energy eigenstates of the same energy corre-
sponding to the right or left localized electron in accord with
the result of standard quantum mechanics. As the protons
are moved closer the dynamical coupling sets in gradually
and eventually becomes strong enough for the ergodic ver-
sion of the Thomas–Fermi quantization procedure to become
applicable. In this work we do not offer a description of the
gradual onset of bonding which is related to the frequency of

electron transfer between the protons. We can, however, treat
the two limiting cases and we shall exploit them to identify
the “nonergodic strain energy” which is the ultimate source
of atomic reactivity and covalent bonding.

We emphasize now that the reactivity according to our
definition is the maximal stabilization associated with the
relaxation of nonergodic (or dynamical) constraints on the
interatomic electron transfer in a molecule. Since the tradi-
tional Thomas–Fermi theory is quantized without any con-
sideration of dynamics it is effectively assuming ergodic and
rapid interatomic electron dynamics. By interatomic electron
dynamics different spin and angular momentum related sub-
spaces of the bonded atoms are ergodically populated and the
energy correspondingly lowered. In order to obtain the reac-
tivity of a single atom, we must therefore modify theThomas–
Fermi theory so as to account for nonergodicity related to
spin and angular momentum conservation. We will do this in
a simple way by accounting approximately for spin and angu-
lar momentum conservation by dividing phase space into l,
ml , ms-subspaces in which a quantum state occupies a full
volume h3 and not a fraction of h3 as in the traditional ergodic
form of the TF theory. The reactivity can then be obtained
as -

�Ereac = ETF,nonerg − ETF,erg. (12)

The new feature here is that the underlying Thomas–Fermi
functional that we use will include a von Weizsäcker cor-
rection for gradient kinetic energy optimized to yield full
atomization energies (in the nonergodic form of the TF the-
ory) in agreement with Hartree–Fock results. In this way we
shall obtain more reliable atomic reactivities�Ereac. We note
that the von Weizsäcker correction cannot in detail cure the
errors of the Thomas–Fermi functional. Nor is there a well-
defined λ-value rigorously founded, but we have obtained a
pragmatic solution to the practical problem of large errors
in the original Thomas–Fermi theory. One can, of course,
further refine the functional to more accurately account for
exchange and correlation effects but we shall here focus on
the principles and the qualitative content of our results leav-
ing the improvement of accuracy to future refinements [22].

We turn now to the implementation of the nonergodic
form of the Thomas–Fermi theory. Let us first consider the
case of hydrogen. In the usual ergodic theory half the elec-
tron is effectively spin up and the other half is spin down.
In the nonergodic theory the whole electron is either spin up
or spin down. The kinetic energy can in the latter case be
obtained as one-half of the kinetic energy of the helium atom
with the same parameter α1 in the exponent of the electron
density function. This procedure captures the fact that the
Fermi surface of the spin space containing the electron must
be at a level to fit a phase space volume h3 below it. In the
ergodic theory the Fermi surface only fits a phase space vol-
ume h3/2 below it in a given spin space. For the atoms Li to
Ne we are filling the L-shell and must account for the further
subdivision of phase space into parts corresponding to the 2s
and the three 2p states. Ignoring the minor 2s to 2p split in
energy we treat phase space as subdivided into four equiva-
lent subspaces corresponding to fixed angular momentum.
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We begin by evaluating the electronic kinetic energy of He
and Ne which will be the same in both forms of the Thomas-
Fermi-vonWeizsäcker theory. In the traditional ergodic quan-
tization the same functional will, with appropriate choice of
atomic number Z, also yield kinetic energies for the other
atoms H, Li–F. The interaction potential energies are always
evaluated in the same way as described by the functional
and analytic integrals above. The kinetic energy of H in the
nonergodic quantization is obtained as -

KE(H) = 1

2
KE(He) (13)

and that of one of the atoms Li–F as -

KE(A(Z)) = Z − 2

8
(KE(Ne)−KE(He))

+KE(He). (14)

In this way the partial occupation of phase space to a higher
Fermi surface is accounted for with the result that the kinetic
energy is greater than in the case of traditional ergodic quan-
tization.

4 Results

In the case of atoms He and Ne the nonergodic and traditional
forms of the Thomas–Fermi theory coincide. We then simply
obtain the energy as a function of the exponent α in the elec-
tron density of the helium atom by minimizing the energy
E(α, λ) with respect to α. This yields α(λ). We then vary λ
so as to find that value which reproduces the Hartree–Fock
energy [23] of the helium atom. This is easily done since the
energy is a monotone increasing function of λ. In the case
of neon we similarly obtain α1(λ) and α2(λ) and then vary λ
until the Hartree–Fock energy of Ne is reproduced. The Har-
tree-Fock energies [23] were calculated using the standard
nonrelativistic method and the λ values were optimized to
reproduce Hartree–Fock energies to four significant figures.
The two-dimensional minimization of energy with respect to
α1(λ) and α2(λ)was done by the steepest descent method. In
the case of H and the atoms Li to F the same procedure was
used except that the kinetic energy was obtained as in Eqs.
13 and 14 above. We thereby obtained atomic energies for
H through Ne which by inclusion of both nonergodic quan-
tization and empirical adjustment of the scale factor λ agree
with the Hartree–Fock theory. The λ values thus obtained
are listed in Table 1 and shown in Fig. 1. We note that for H
which in reality has only gradient kinetic energy λ is 0.083.
This is a measure of the degree of overlap between the gra-
dient and orthogonality forms of kinetic energy. As we add
electrons and charge up the nucleus, the contribution of gradi-
ent kinetic energy remains stable with only minor variations.
This is in agreement with expectations [21]. Our somewhat
low λ values may be partially due to our use of exponential
electron densities which are more appropriate for pure Cou-
lomb potentials than for the Yukawa like screened atomic
potentials of He through Ne.

Table 1 The optimized scaling factor lambda obtained in the nonerg-
odic quantization for the first ten elements

Atom λ

H 0.083
He 0.078
Li 0.0757
Be 0.0725
B 0.0755
C 0.0786
N 0.0817
O 0.0882
F 0.09374
Ne 0.0992

Given these λ values we then relax the constraints and
quantize the TF theory in the traditional manner correspond-
ing to full ergodicity and rapid electron transfer between spin
and angular momentum states. The α values which minimize
the energy change slightly and the total energy is lower than
in the nonergodic case—except for He and Ne—due mainly
to the form of the kinetic energy expression. For each atom we
can now obtain a shift in energy downward as listed in Table 2
and shown in Fig. 2. This maximal stabilization energy due
to relaxation of constraints is our “atomic reactivity.” We see
that it is about 0.3 Hartree for H, zero for He and then rises
to a peak of about 1.5 Hartree for oxygen before dropping
down to zero again for Ne. The maximum for O reflects that
there is both a two-electron hole in the corresponding inert
gas structure and a highly charged nucleus. Nitrogen has a
three-electron hole but a less highly charged nucleus. It is
just slightly less reactive than oxygen. In the case of carbon
the charge of the nucleus is too weak and for fluorine there is
only a one-electron hole. Thus, the reactivities of these atoms
drop down below the level reached by oxygen and nitrogen.

We can now compare the total molecular binding energy
[24] with the total reactivity energy. For the molecules BeH2
and BH3 the total molecular binding energies were calcu-
lated by the program package GAUSSIAN 98 and the G3B3
method was used [25,26]. We define the molecular bonding
efficiency as simply the fraction of the theoretically available
nonergodic strain energy of the constituent atoms which is
obtained as the binding energy of the molecule. Thus, we cal-
culate the ratio of the molecular binding energy and the total
nonergodic strain energy obtained by summing strain ener-
gies over the atoms of the molecule. The ratios thus obtained
will be referred to as the bonding efficiencies and are shown in
Fig. 3.We note that the hydrides have higher bonding efficien-
cies than the homonuclear diatomic molecules which means
that the hydrides encounter less antibonding repulsion and
more fully relax the dynamical constraints of the separated
atoms. We believe one reason for this is that the Pauli repul-
sion is generally lower for hydrides with few electrons and
much higher in homonuclear diatomic molecules and that
the molecules B2 through F2 have more remaining nonerg-
odicity due to e.g., axial symmetry compared to the corre-
sponding hydrides. If we consider just the hydrides we can
see a decrease in bonding efficiency when going from H2 to
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Fig. 1 The optimized scaling factor of the von Weizsäcker correction term to the Thomas–Fermi theory with nonergodic quantization for the first
ten elements

Table 2 The atomic reactivity defined as nonergodic strain energy for
the first ten elements

Atom Reactivity (Hartree)

H 0.26
He 0.00
Li 0.10
Be 0.35
B 0.74
C 1.15
N 1.46
O 1.50
F 1.08
Ne 0.00

LiH and from CH4 to HF which is probably due mainly to
rising Pauli repulsion. When going from BeH2 to CH4 there
is an increase of the bonding efficiency, which may be due
to the contraction of the core electron density. If we now,
instead, consider the homonuclear diatomic molecules we
find a decrease in bonding efficiency when going from H2
to Li2 and from N2 to F2 which may again be due to Pa-
uli repulsion. When going from Be2 to N2 we can see an
increase of the bonding efficiency, which may be due to the
contraction of the core electron density. In the case of Be2
the low bonding efficiency could be partially related to a lack
of splitting between the 2s and the three 2p states in the TF
theory. Clearly the hydrides more fully and uniformly exploit
the covalent binding mechanism which is hindered by strong
repulsive forces in the case of Be2 through F2.

5 Discussion and conclusion

It is surprising but nevertheless a fact that the successful
numerical treatment of covalent bonding by quantum

chemistry has not similarly incontrovertibly resolved the phys-
ical nature of the bonding mechanism. Our view that covalent
bonding is of quantum mechanical and dynamical origin is
but one of several and the issue is clearly not settled [1,27].
While all views are likely to have some merit the most funda-
mental ought also to be the most useful. Therefore, we have
attempted to draw upon our proposed mechanism to yield a
new understanding of atomic reactivity. As is often the case
the great flaw of the original and still very relevant Thomas–
Fermi theory of electronic structure is very enlightening. In
this case the flaw in the theory eliminated the covalent bond-
ing mechanism. By comparison with the Kohn–Sham imple-
mentation of the density functional theory, we can then see
precisely what it is that must be present in order to account for
covalent bonding. The answer is dynamics. We must account
for dynamics with its varying degree of constraint. Such con-
straints impart a reactivity to the atoms and their relaxation
is the mechanism of covalent bonding in the deepest sense.
This concept of atomic reactivity is precisely that which we
allude to when we say that “atoms react in order to more
closely approach noble gas structures.” As it turns out the
original Thomas–Fermi theory assumes the atoms to be like
noble gas interpolations thereby rendering them unreactive.
There is, at the moment, no other theory which can produce
this type of electronic relaxation energy for the atoms.

In the present work we have refined the estimate of atomic
reactivity by adding a von Weizsäcker treatment of gradi-
ent kinetic energy adjusted to produce Hartree–Fock atomic
energies before the relaxation of constraints. The scaling fac-
tor for the von Weizsäcker gradient kinetic energy is close to
but slightly smaller than the factor of 1/9 expected by formal
gradient expansion. We note that for hydrogen and helium
there is really no orthogonality kinetic energy and our re-
sults reflect the degree to which the standard Thomas–Fermi
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Fig. 2 The atomic reactivity for the first ten elements
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Fig. 3 The bonding efficiency for some homonuclear diatomic molecules and the corresponding hydrides

kinetic energy already captures gradient kinetic energy. For
lithium to neon the optimized scale factor remains stable but
the orthogonality kinetic energy becomes increasingly dom-
inant. This dominance is most likely to be significantly aided
by our choice of simple exponential electron densities for
each shell. An unconstrained numerical optimization of the
electron density would probably significantly increase λ for
the heavier of our ten elements. As it turns out the atomic
reactivities that we obtain as a difference of two atomic ener-
gies are not very sensitive to the von Weizsäcker correction
which is nearly canceled in the subtraction. This is fortunate
and supports our use of simple computational methods.

The atomic reactivity obtained behaves in a very intuitive
way. It is relatively small for hydrogen, zero for helium and
neon. From helium there is a steady rise to the value 1.5 a.u.
for oxygen which—quite in agreement with the traditional
focus on oxygen and oxidation in chemistry textbooks—is
the most reactive atom. Nitrogen is almost as reactive due to
its three contributing electrons while flourine and carbon are
noticeably less reactive. The proposed measure of reactivity
confirms popular belief and gives it a simple yet deep mean-
ing. It leads to a further concept of bonding efficiency which
is the fraction of the reactivity summed up over atoms show-
ing up in the form of binding energy in the molecule.There are
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repulsive mechanisms preventing the full realization of
bonding stabilization in molecules. The repulsion between
nuclei and between nonbonding electrons are the most obvi-
ous. The hydrides are clearly less hampered by such repul-
sion than our diatomic molecules. Adding hydrogen atoms is
clearly the simplest way of bringing a reactive atom toward
stable inert gas like electronic structure.

It is noteworthy that our concepts and approach to atomic
reactivity relate most directly to the nonpolar covalent bonds
rather than the polar covalent bonds which have been the
focus of much analysis, e.g., by Sanderson [6,28]. Our work
primarily concerns the internal atomic variation in the chem-
ical potential, or Fermi energy, caused by nonergodic or hin-
dered dynamics. There is, of course, also a reactivity related
to chemical potentials in separable atoms being different.
The chemical potential of an atom A, µ, is essentially equal
to the electronegativity of the atom [29] which in turn can be
defined by the Mulliken relation -

µ � −E � −1

2
(I + Ea), (15)

where I is the first ionization energy and Ea is the electron
affinity. Given the well-known condition from thermodynam-
ics that the chemical potential of a species at equilibrium shall
be the same in all subsystems one is led to the principle of
equalization of chemical potential as the fundamental driv-
ing force of chemical bonding [6,26]. What we have done
here is to take this principle a step further by distinguishing
subspaces defined by spin and orbital angular momentum
conservation in atoms and noting that covalent bonding is
associated with the equalization of chemical potential over
such internal atomic subspaces achieved by the dynamical
delocalization of valence electrons over two or more atoms.
The flexibility of the semiclassical Thomas–Fermi theory has
then allowed us to carry out this internal atomic relaxation for
an isolated atom as a “virtual relaxation” identifying the final
state toward which the dynamical delocalization strives. By
this device it has become possible for us to add a numerical
estimate of covalent reactivity to the understanding of atoms
and chemical bonding. We hope that these concepts and mea-
sures might bring the field of chemical bonding theory a step
forward by shedding new light on the source of stabilization
employed in covalent bonding.

Acknowledgements The authors thank Dr. George Bacskay and
Dr. Julia Novakovskaya for useful discussions and the Swedish
Science Research Council for support.

References

1. Esterhuysen C, Frenking G (2004) Theor Chem Acc 111:381
2. Nordholm S (1987) J Chem Phys 86:363
3. Nordholm S (1988) J Chem Educ 65:581
4. Lewis GN (1916) J Am Chem Soc 38:762
5. Moore WJ (1972) Physical chemistry, 5th edn. Prentice Hall, New

Jersey
6. Parr RG, Yang W (1989) Density functional theory of atoms and

molecules. Oxford University Press, Oxford
7. Gunnarsson O, Lundqvist BI (1976) Phys Rev B 13:4274
8. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200
9. Becke AD (1993) J Chem Phys 98:5648

10. Kohn W, Sham LJ (1965) Phys Rev 140:A1133
11. Thomas LH (1927) P Camb Phils Soc 23:542
12. Fermi E (1927) Rend Acad Lincei 6:602
13. Teller E (1962) Rev Mod Phys 34:627
14. Hellman H (1928) Z Phys 48:73
15. Hellman H (1937) Einfürung in die Quantum Chemie. Franz Deu-

ticke, Leipzig
16. Ruedenberg K (1962) Rev Mod Phys 34:326
17. Ruedenberg K (1975) In: Chalvet O, Daudel R (eds) Localization

and delocalization in quantum chemistry. Reidel, Dordrecht, p 223
18. Bacskay GB, Reimers JR, Nordholm S (1997) J Chem Educ

74:1494
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